Virus
|
Family
|
|
virion
|
Host
|
function
|
Viral protein
|
Receptor
|
Type
|
Host expression
|
Virus tropism
|
entry mode
|
Rhesus Rotavirus |
Reoviridae, Rotavirus |
dsRNA |
Non-env |
Monkeys |
Adhesion |
VP4 |
JAM-A/F11R |
Adhesion molecule |
epithelial cells |
biliary epithelial cell (cholangiocytes) |
Clathrin/caveolin-independent endocytosis |
Rhesus Rotavirus |
Reoviridae, Rotavirus |
dsRNA |
Non-env |
Monkeys |
Adhesion |
VP8* |
Neu5Ac Sialic acids |
Carbohydrate |
? |
biliary epithelial cell (cholangiocytes) |
Clathrin/caveolin-independent endocytosis |
Rhesus Rotavirus |
Reoviridae, Rotavirus |
dsRNA |
Non-env |
Monkeys |
Entry |
VP4 |
Integrin α2β1 |
Adhesion molecule |
? |
biliary epithelial cell (cholangiocytes) |
Clathrin/caveolin-independent endocytosis |
Rhesus Rotavirus |
Reoviridae, Rotavirus |
dsRNA |
Non-env |
Monkeys |
Entry |
VP4 |
Integrin α4
β1
|
Adhesion molecule |
Leukocytes |
biliary epithelial cell (cholangiocytes) |
Clathrin/caveolin-independent endocytosis |
|
Rhesus Rotavirus |
Reoviridae, Rotavirus |
dsRNA |
Non-env |
Monkeys |
Entry |
VP4 |
Integrin αV
β3
|
Adhesion molecule |
? |
biliary epithelial cell (cholangiocytes) |
Clathrin/caveolin-independent endocytosis |
Porcine Rotavirus |
Reoviridae, Rotavirus |
dsRNA |
Non-env |
Pig |
Adhesion |
VP8* |
Neu5Gc Sialic acids |
Carbohydrate |
? |
enterocytes at the top of intestinal villi |
Clathrin-mediated endocytosis |
Human Rotavirus strain Wa |
Reoviridae, Rotavirus |
dsRNA |
Non-env |
Human |
Adhesion |
VP8* |
A Histo-blood group antigen (HBGA)
| Adhesion molecule |
? |
enterocytes at the top of intestinal villi |
Clathrin-mediated endocytosis |
Human Rotavirus strain Wa |
Reoviridae, Rotavirus |
dsRNA |
Non-env |
Human |
Adhesion |
VP4 |
JAM-A/F11R
| Adhesion molecule |
? |
enterocytes at the top of intestinal villi |
Clathrin-mediated endocytosis |
Human Rotavirus strain Wa |
Reoviridae, Rotavirus |
dsRNA |
Non-env |
Human |
Entry |
VP4 |
Integrin α2β1 |
Adhesion molecule |
? |
enterocytes at the top of intestinal villi |
Clathrin-mediated endocytosis |
Mammalian reovirus |
Reoviridae, Orthoreovirus |
dsRNA |
Non-env |
Human |
Entry |
Sigma-1 |
JAM-A/F11R , Carbohydrates |
Adhesion molecule |
? |
neurons |
Clathrin-mediated endocytosis |
Mammalian reovirus |
Reoviridae, Orthoreovirus |
dsRNA |
Non-env |
Human |
Entry |
Sigma-1 |
Integrin β1 |
Adhesion molecule |
? |
primary: enterocytes at the top of intestinal villi, secondary: neurons |
Clathrin-mediated endocytosis |
Mammalian reovirus |
Reoviridae, Orthoreovirus |
dsRNA |
Non-env |
Human |
Entry |
Sigma-1 |
RTN4R(NgR1) |
Receptor |
Neurons |
primary: enterocytes at the top of intestinal villi, secondary: neurons |
Clathrin-mediated endocytosis |
Bluetongue virus |
Reoviridae, Orbivirus |
dsRNA |
Non-env |
Bovine, goat, sheep, bitting midges |
Adhesion? |
Outer capsid protein VP2 |
Sialic acids? |
Carbohydrate |
? |
Mammals primary: lymphocytes, secondary: endothelial cells; Insect: gut |
Clathrin-mediated endocytosis |
Bluetongue virus |
Reoviridae, Orbivirus |
dsRNA |
Non-env |
Bovine, goat, sheep, bitting midges |
Adhesion? |
Outer capsid protein VP2 |
Heparan sulfate |
Polysaccharide |
? |
Mammals primary: lymphocytes, secondary: endothelial cells; Insect: gut |
Clathrin-mediated endocytosis |
Bluetongue virus |
Reoviridae, Orbivirus |
dsRNA |
Non-env |
Bovine, goat, sheep, bitting midges |
Entry? |
Intermediate capsid protein VP7 |
Integrin? |
Adhesion molecule |
? |
Mammals primary: lymphocytes, secondary: endothelial cells; Insect: gut |
Clathrin-mediated endocytosis |
Activation of EGFR on monocytes is required for human cytomegalovirus entry and mediates cellular motility
Gary Chan, Maciej T. Nogalski, Andrew D. Yurochko
Proc. Natl. Acad. Sci. U.S.A. December 29, 2009; 106: 22369?22374
Influenza entry pathways in polarized MDCK cells
Yueting Zhang, Gary R. Whittaker
Biochem. Biophys. Res. Commun. July 18, 2014; 450: 234?239
Fusion of Sendai virus and individual host cells and inhibition of fusion by lipophosphoglycan measured with image correlation spectroscopy
B. J. Rasmusson, T. D. Flanagan, S. J. Turco, R. M. Epand, N. O. Petersen
Biochim. Biophys. Acta September 16, 1998; 1404: 338?352
Respiratory syncytial virus glycoprotein G interacts with DC-SIGN and L-SIGN to activate ERK1 and ERK2
Teresa R. Johnson, Jason S. McLellan, Barney S. Graham
J. Virol. February 2012; 86: 1339?1347
The C-type Lectin Langerin Functions as a Receptor for Attachment and Infectious Entry of Influenza A Virus
Wy Ching Ng, Sarah L. Londrigan, Najla Nasr, Anthony L. Cunningham, Stuart Turville, Andrew G. Brooks, Patrick C. Reading
J. Virol. 2015; 90: 206?221
A Sialylated Voltage-Dependent Ca(2+) Channel Binds Hemagglutinin and Mediates Influenza A Virus Entry into Mammalian Cells.
Fujioka Y, Nishide S, Ose T, Suzuki T, Kato I, Fukuhara H, Fujioka M, Horiuchi
K, Satoh AO, Nepal P, Kashiwagi S, Wang J, Horiguchi M, Sato Y, Paudel S, Nanbo
A, Miyazaki T, Hasegawa H, Maenaka K, Ohba Y.
Cell Host Microbe. 2018 Jun 13;23(6):809-818
Junction adhesion molecule is a receptor for reovirus
E S Barton, J C Forrest, J L Connolly, J D Chappell, Y Liu, F J Schnell, A Nusrat, C A Parkos, T S Dermody
Cell February 9, 2001; 104: 441-451
From touchdown to transcription: the reovirus cell entry pathway
Pranav Danthi, Kristen M Guglielmi, Eva Kirchner, Bernardo Mainou, Thilo Stehle, Terence S Dermody
Curr. Top. Microbiol. Immunol. 2010; 343: 91-119
Crystallization and preliminary X-ray diffraction analysis of the sialic acid-binding domain (VP8*) of porcine rotavirus strain CRW-8
Stacy A Scott, Gavan Holloway, Barbara S Coulson, Alex J Szyczew, Milton J Kiefel, Mark von Itzstein, Helen Blanchard
Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. June 1, 2005; 61: 617-620
Novel structural insights into rotavirus recognition of ganglioside glycan receptors
Xing Yu, Barbara S Coulson, Fiona E Fleming, Jeffrey C Dyason, Mark von Itzstein, Helen Blanchard
J. Mol. Biol. November 11, 2011; 413: 929-939
Relative Roles of GM1 Ganglioside, N-Acylneuraminic Acids, and α2β1 Integrin in Mediating Rotavirus Infection
Fiona E Fleming, Raphael Bohm, Vi T Dang, Gavan Holloway, Thomas Haselhorst, Paul D Madge, Jaigeeth Deveryshetty, Xing Yu, Helen Blanchard, Mark von Itzstein, Barbara S Coulson
J. Virol. April 2014; 88: 4558-4571
Rotavirus spike protein VP5* binds α2β1 integrin on the cell surface and competes with virus for cell binding and infectivity
Kate L Graham, Yoshikazu Takada, Barbara S Coulson
J. Gen. Virol. May 2006; 87: 1275-1283
Rotaviruses interact with α4β7 and α4β1 integrins by binding the same integrin domains as natural ligands
Kate L Graham, Fiona E Fleming, Peter Halasz, Marilyn J Hewish, Hadya S Nagesha, Ian H Holmes, Yoshikazu Takada, Barbara S Coulson
J. Gen. Virol. December 2005; 86: 3397-3408
Different rotavirus strains enter MA104 cells through different endocytic pathways: the role of clathrin-mediated endocytosis
Michelle Gutierrez, Pavel Isa, Claudia Sanchez-San Martin, Jimena Perez-Vargas, Rafaela Espinosa, Carlos F Arias, Susana Lopez
J. Virol. September 2010; 84: 9161-9169
Histo-blood group antigens: a common niche for norovirus and rotavirus
Ming Tan, Xi Jiang
Expert Rev Mol Med 2014; 16: e5
Bluetongue virus coat protein VP2 contains sialic acid-binding domains, and VP5 resembles enveloped virus fusion proteins
Xing Zhang, Mark Boyce, Bishnupriya Bhattacharya, Xiaokang Zhang, Stan Schein, Polly Roy, Z Hong Zhou
Proc. Natl. Acad. Sci. U.S.A. April 6, 2010; 107: 6292?6297
Heat shock cognate protein 70 is involved in rotavirus cell entry
Carlos A Guerrero, Daniela Bouyssounade, Selene Zarate, Pavel Isa, Tomas Lopez, Rafaela Espinosa, Pedro Romero, Ernesto Mendez, Susana Lopez, Carlos F Arias
J. Virol. April 2002; 76: 4096-4102
The spike protein VP4 defines the endocytic pathway used by rotavirus to enter MA104 cells
Marco A D?az-Salinas, Pedro Romero, Rafaela Espinosa, Yasutaka Hoshino, Susana Lopez, Carlos F Arias
J. Virol. February 2013; 87: 1658-1663
Bluetongue virus entry into cells
Mario Forzan, Mark Marsh, Polly Roy
J. Virol. May 2007; 81: 4819-4827
A clathrin independent macropinocytosis-like entry mechanism used by bluetongue virus-1 during infection of BHK cells
Sarah Gold, Paul Monaghan, Peter Mertens, Terry Jackson
PLoS ONE 2010; 5: e11360
Beta1 integrin mediates internalization of mammalian reovirus
Melissa S. Maginnis, J. Craig Forrest, Sarah A. Kopecky-Bromberg, S. Kent Dickeson, Samuel A. Santoro, Mary M. Zutter, Glen R. Nemerow, Jeffrey M. Bergelson, Terence S. Dermody
J. Virol. March 2006; 80: 2760?2770
The Nogo receptor NgR1 mediates infection by mammalian reovirus
Jennifer L. Konopka-Anstadt, Bernardo A. Mainou, Danica M. Sutherland, Yuichi Sekine, Stephen M. Strittmatter, Terence S. Dermody
Cell Host Microbe June 11, 2014; 15: 681?691
Measurement of bluetongue virus binding to a mammalian cell surface receptor by an in situ immune fluorescent staining technique
James O. Mecham, Linda E. McHolland
J. Virol. Methods April 2010; 165: 112?115
RGD tripeptide of bluetongue virus VP7 protein is responsible for core attachment to Culicoides cells
B. H. Tan, E. Nason, N. Staeuber, W. Jiang, K. Monastryrskaya, P. Roy
J. Virol. April 2001; 75: 3937?3947