![]() |
![]() |
![]() |
||||
---|---|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Virus | Family | virion | Host | function | Viral protein | Receptor | Type | Host expression | Virus tropism | entry mode | |
---|---|---|---|---|---|---|---|---|---|---|---|
Bovine coronavirus | Coronaviridae, Betacoronavirus | ss+RNA | Env | Bovine | Entry | Spike glycoprotein | ? Sialic acids![]() |
Carbohydrate | ? | Calves: respiratory epithelium. Adult: intestinal epithelium | ? |
Bovine viral diarrhea virus | Flaviviridae, Pestivirus | ss+RNA | Env | Bovine | Entry | E1/E2 | CD46![]() |
Receptor | Ubiquitous | Primary: respiratory epithelium. Secondary: Lymphocytes? | Clathrin-mediated endocytosis![]() |
Norwalk virus | Caliciviridae, Norovirus | ss+RNA | Env | Human | Entry | capsid protein VP1 | A/O Histo-blood group antigen (HBGA)![]() |
Carbohydrate | ? | epithelial intestinal cells | ? |
Murine norovirus | Caliciviridae, Norovirus | ss+RNA | Env | Mouse | Entry | capsid protein VP1 | CD300lf, CD300ld![]() |
Receptor | Tuft cells![]() |
Tuft cells![]() |
? |
Feline calicivirus | Caliciviridae, Norovirus | ss+RNA | Env | Felines | Entry | capsid protein VP1 | JAM-A/F11R![]() |
Adhesion molecule | ? | ? | ? |
Classical swine fever virus | Flaviviridae, Pestivirus | ss+RNA | Env | Swine | Adhesion | E1/E2 | Heparan sulfate | Polysaccharide | Primary: Mainly Blood, lymphoid tissue, pancreas and ileum, secondary: most organs | ? | |
Classical swine fever virus | Flaviviridae, Pestivirus | ss+RNA | Env | Swine | Entry | E1/E2 | CD46![]() |
Receptor | Ubiquitous | Primary: Mainly Blood, lymphoid tissue, pancreas and ileum, secondary: most organs | ? |
Coxsackievirus A9 | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Entry | VP1, VP2 and VP3 | Integrin αVβ3![]() |
Adhesion molecule | ? | epithelial airway cells | Clathrin/caveolin-independent endocytosis![]() |
Coxsackievirus A9 | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Entry | VP1, VP2 and VP3 | Integrin αVβ6![]() |
Adhesion molecule | ? | epithelial airway cells | Clathrin/caveolin-independent endocytosis![]() |
Coxsackievirus A21 | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Adhesion | VP1, VP2 and VP3 | CD55 (DAF)![]() |
Complement regulator | Lung, ovary, placenta | epithelial airway cells | ? |
Coxsackievirus A21 | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Entry | VP1, VP2 and VP3 | ICAM-1![]() |
Adhesion molecule | Lungs, Lymphoid tissues, Kidney | epithelial airway cells | ? |
Coxsackievirus B1 to B6 | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Entry | VP1, VP2 and VP3 | CXADR(CAR)![]() |
Adhesion molecule | Epithelial and endothial cell, heart, brain | Brain, heart, pancreas | Caveolin-mediated endocytosis![]() |
Coxsackievirus B1, B3, B5 | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Adhesion | VP1, VP2 and VP3 | CD55 (DAF)![]() |
Complement regulator | Lung, ovary, placenta | Brain, heart, pancreas | Caveolin-mediated endocytosis![]() |
Japanese encephalitis virus | Flaviviridae, Flavivirus | ss+RNA | Env | Bovine, bird, horse, swine, mosquitoes and Human | Entry? | Envelope protein E | DC-SIGN![]() |
Lectin | Dendritic cells | Dendritic cells![]() |
Clathrin independent endocytosis![]() |
Japanese encephalitis virus | Flaviviridae, Flavivirus | ss+RNA | Env | Bovine, bird, horse, swine, mosquitoes and Human | Entry? | Envelope protein E | CLEC4G (LSECtin)![]() |
Lectin | Dendritic cells, macrophages, sinusoidal endothelial cells of the liver and lymph node | Dendritic cells![]() |
Clathrin independent endocytosis![]() |
Dengue virus | Flaviviridae, Flavivirus | ss+RNA | Env | Human, mosquitoes | Adhesion | Envelope protein E | Mannose receptor(MRC1) ![]() |
Receptor | Macrophages, dendritic cells, dermal fibroblasts and keratinocytes | Macrophages, dendritic cells, hepatocytes, platelets | Clathrin-mediated endocytosis, or Macropinocytosis![]() |
Dengue virus | Flaviviridae, Flavivirus | ss+RNA | Env | Human, mosquitoes | Adhesion | Envelope protein E | Heparan sulfate ![]() |
Polysaccharide | Macrophages, dendritic cells, hepatocytes, platelets | Clathrin-mediated endocytosis, or Macropinocytosis![]() |
|
Dengue virus | Flaviviridae, Flavivirus | ss+RNA | Env | Human, mosquitoes | Adhesion | Envelope protein E | CLEC5A![]() |
Lectin | Macrophages | Macrophages, dendritic cells, hepatocytes, platelets | Clathrin-mediated endocytosis, or Macropinocytosis![]() |
Dengue virus | Flaviviridae, Flavivirus | ss+RNA | Env | Human, mosquitoes | Adhesion | Envelope protein E | DC-SIGN![]() |
Lectin | Dendritic cells | Macrophages, dendritic cells, hepatocytes, platelets | Clathrin-mediated endocytosis, or Macropinocytosis![]() |
Dengue virus 1 | Flaviviridae, Flavivirus | ss+RNA | Env | Human, mosquitoes | Entry | Envelope protein E | Laminin receptor (RPSA)?![]() |
Receptor | Ubiquitous | Macrophages, dendritic cells, hepatocytes, platelets | Clathrin-mediated endocytosis, or Macropinocytosis![]() |
Dengue virus | Flaviviridae, Flavivirus | ss+RNA | Env | Human, mosquitoes | Alternative Entry | virion membrane phosphatidylserine | HAVCR1(TIM1)![]() |
Receptor | Dendritic cells, macrophages, epithelial cells, mast cells, B lymphocytes, activated CD4+ cells, kidney, hepatocytes | Macrophages, dendritic cells, hepatocytes, platelets | Clathrin-mediated endocytosis, or Macropinocytosis![]() |
Dengue virus | Flaviviridae, Flavivirus | ss+RNA | Env | Human, mosquitoes | Entry | Small envelope protein M | CLDN1![]() |
Adhesion molecule | Epithelial cells | Macrophages, dendritic cells, hepatocytes, platelets | Clathrin-mediated endocytosis, or Macropinocytosis![]() |
Dengue virus | Flaviviridae, Flavivirus | ss+RNA | Env | Human, mosquitoes | Alternative Entry | virion membrane phosphatidylserine | Tyro3 (TAM family)![]() |
Receptor | brain? | Macrophages, dendritic cells, hepatocytes, platelets | Clathrin-mediated endocytosis, or Macropinocytosis![]() |
Zika virus | Flaviviridae, Flavivirus | ss+RNA | Env | Human, mosquitoes | Entry | virion membrane phosphatidylserine | Tyro3 (TAM family)![]() |
Receptor | brain? | Macrophages, dendritic cells, keratinocytes | ? |
Zika virus | Flaviviridae, Flavivirus | ss+RNA | Env | Human, mosquitoes | Entry | virion membrane phosphatidylserine | AXL (TAM family)![]() |
Receptor | Dendritic cells, macrophages? | Macrophages, dendritic cells, keratinocytes | ? |
Zika virus | Flaviviridae, Flavivirus | ss+RNA | Env | Human, mosquitoes | Adhesion | Envelope protein E | DC-SIGN![]() |
Lectin | Dendritic cells | Macrophages, dendritic cells, keratinocytes | ? |
Dengue virus | Flaviviridae, Flavivirus | ss+RNA | Env | Human, mosquitoes | Alternative Entry | virion membrane phosphatidylserine | AXL (TAM family)![]() |
Receptor | Dendritic cells, macrophages? | Macrophages, dendritic cells, hepatocytes, platelets | Clathrin-mediated endocytosis, or Macropinocytosis![]() |
Yellow fever virus | Flaviviridae, Flavivirus | ss+RNA | Env | Human, mosquitoes | Adhesion | Envelope protein E | Heparan sulfate ![]() |
Polysaccharide | Macrophages, dendritic cells, hepatocytes | ? | |
Encephalomyocarditis virus | Picornaviridae, Cardiovirus | ss+RNA | Non-env | Rodent, pig | Entry | VP1, VP2 and VP3 | Vcam1![]() |
Adhesion molecule | lymphocytes, monocytes | Neurons, cardiomyocytes, pancreatic cells | |
Echovirus 1 | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Entry | VP1, VP2 and VP3 | Integrin α2 β1![]() |
Adhesion molecule | Epithelial cells in the gastrointestinal tract | Caveolin-mediated endocytosis | |
Echovirus 8 | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Entry | VP1, VP2 and VP3 | Integrin α2 β1![]() |
Adhesion molecule | Epithelial cells in the gastrointestinal tract | ? | |
Echovirus 6, 7, 11, 12, 20 and 21 | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Entry | VP1, VP2 and VP3 | CD55 (DAF)![]() |
Complement receptor | Ubiquitous | epithelial cells in the gastrointestinal tract??, heart | |
Enterovirus 70 | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Adhesion? | VP1, VP2 and VP3 | alpha 2,3 Sialic acids![]() |
Carbohydrate | ? | epithelial cells in the gastrointestinal tract?? | ? |
Enterovirus 70 | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Adhesion | VP1, VP2 and VP3 | CD55 (DAF)![]() |
Complement regulator | ? | epithelial cells in the gastrointestinal tract?? | ? |
Enterovirus 71 | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Adhesion | VP1, VP2 and VP3 | Sialic acids![]() | Carbohydrate | neurons, lymphocytes? | Depends on entry receptor | |
Enterovirus 71 | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Entry | VP1, VP2 and VP3 | SCARB2![]() |
Endosomal molecule | Ubiquitous cytoplasmic expression | neurons, lymphocytes? | Clathrin-mediated endocytosis |
Enterovirus 71 | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Entry | VP1, VP2 and VP3 | SELPLG![]() |
Adhesion molecule | Lymphocytes | neurons, lymphocytes? | Caveolin-mediated endocytosis![]() |
Foot-and-mouth disease virus | Picornaviridae, Aphthovirus | ss+RNA | Non-env | Bovine, sheep | Entry | VP1, VP2 and VP3 | Integrins αV β![]() |
Adhesion molecule | epithelial cells of the mouth, lung, and feet | Clathrin-mediated endocytosis | |
Hepatitis A virus | Picornaviridae, Hepatovirus | ss+RNA | Non-env | Human | Entry | VP1, VP2 and VP3 | HAVCR1(TIM1)![]() |
Receptor | Dendritic cells, macrophages, epithelial cells, mast cells, B lymphocytes, activated CD4+ cells, kidney, hepatocytes | Hepatocytes, epithelium in gastrointestinal tract, salivary glands, kidney, lymphocytes? | ? |
Hepatitis C virus | Flaviviridae, Hepacivirus | ss+RNA | Env | Human | Adhesion | E1 and E2 proteins | Heparan sulfate | Polysaccharide | Hepatocytes | Clathrin-mediated endocytosis | |
Hepatitis C virus | Flaviviridae, Hepacivirus | ss+RNA | Env | Human | Entry | ? | LDLR![]() |
Receptor | Gatrointestinal tract, liver, lung, adrenal glands | Hepatocytes | Clathrin-mediated endocytosis |
Hepatitis C virus | Flaviviridae, Hepacivirus | ss+RNA | Env | Human | Adhesion | E1 and E2 proteins | DC-SIGN![]() |
Lectin | Dendritic cells, liver sinusoidal cells | Hepatocytes | Clathrin-mediated endocytosis |
Hepatitis C virus | Flaviviridae, Hepacivirus | ss+RNA | Env | Human | Adhesion | E1 and E2 proteins | CLEC4M(L-SIGN)![]() |
Lectin | Liver sinusoidal cells and lymph nodes | Hepatocytes | Clathrin-mediated endocytosis |
Hepatitis C virus | Flaviviridae, Hepacivirus | ss+RNA | Env | Human | Entry | E1 and E2 proteins | CLDN1![]() |
Adhesion molecule | Epithelial cells | Hepatocytes | Clathrin-mediated endocytosis |
Hepatitis C virus | Flaviviridae, Hepacivirus | ss+RNA | Env | Human | Entry | E1 and E2 proteins | CD81? | Receptor | hemopoietic, endothelial and epithelial cells | Hepatocytes | Clathrin-mediated endocytosis |
Hepatitis C virus | Flaviviridae, Hepacivirus | ss+RNA | Env | Human | Entry | E1 and E2 proteins | SCARB1?![]() |
Endosomal molecule | Ubiquitous cytoplasmic expression | Hepatocytes | Clathrin-mediated endocytosis |
Human coronavirus 229E | Coronaviridae, Alphacoronavirus | ss+RNA | Env | Human | Adhesion | Spike glycoprotein | CLEC4M(L-SIGN)![]() |
Lectin | liver sinusoidal endothelial cells and lymph node | epithelial airway cells, macrophages | Caveolin-mediated endocytosis![]() |
Human coronavirus 229E | Coronaviridae, Alphacoronavirus | ss+RNA | Env | Human | Entry | Spike glycoprotein | ANPEP ![]() |
Peptidase | intestinal, lung and kidney epithelial cells, liver | epithelial airway cells, macrophages | Caveolin-mediated endocytosis![]() |
Human coronavirus OC43 | Coronaviridae, Betacoronavirus | ss+RNA | Env | Human | Entry | Spike glycoprotein | (alpha 2,3 or 2,6) 9-O-acetylated Sialic acids![]() |
Carbohydrate | epithelial airway cells | ? | |
Human parechovirus 1 | Picornaviridae, Parechovirus | ss+RNA | Non-env | Human | Entry | VP1, VP2 and VP3 | Integrin αVβ3![]() |
Adhesion molecule | epitelial cells in respiratory and gastro-intestinal tract | Clathrin/caveolin-independent endocytosis | |
Japanese encephalitis virus | Flaviviridae, Flavivirus | ss+RNA | Env | Bovine, bird, horse, swine, mosquitoes and Human | Adhesion | E | Heparan sulfate![]() |
Polysaccharide | Dendritic cells, neurons | Clathrin independent endocytosis![]() |
|
Japanese encephalitis virus | Flaviviridae, Flavivirus | ss+RNA | Env | Bovine, bird, horse, swine, mosquitoes and Human | Adhesion | E | CLEC4M(L-SIGN)![]() |
Lectin | liver sinusoidal endothelial cells and lymph node | Dendritic cells, neurons | Clathrin independent endocytosis![]() |
Major receptor group, rhinovirus A-B (e.g.HRV14) | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Entry | VP1, VP2 and VP3 | ICAM-1![]() |
Adhesion molecule | Lungs, Lymphoid tissues, Kidney | Nasopharynx epithelial cells | Clathrin/caveolin-independent endocytosis |
Minor receptor group, rhinovirus A-B (e.g.HRV2) | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Entry | VP1, VP2 and VP3 | LDLR family![]() |
Receptor | adrenal gland, Liver, lung, gastroinstestinal tract | epithelial airway cells | Clathrin-mediated endocytosis |
Rhinovirus C | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Entry | VP1, VP2 and VP3 | CDHR3![]() |
Adhesion molecule | Nasopharynx, Bronchus, salivary gland | Nasopharynx epithelial cells | ? |
Enterovirus D68 (Rhinovirus 87) | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Adhesion | VP1, VP2 and VP3 | Sialic acids![]() |
Carbohydrate | epithelial airway cells | ? | |
Enterovirus D68 (Rhinovirus 87) | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Adhesion | VP1, VP2 and VP3 | CD55 (DAF)![]() |
Complement regulator | Lung, ovary, placenta | epithelial airway cells | ? |
Mouse hepatitis virus | Coronaviridae, Betacoronavirus | ss+RNA | Env | Rodents | Entry | Spike glycoprotein | Ceacam1![]() |
Adhesion molecule | Liver and brain | Hepatocytes | Clathrin-mediated endocytosis![]() |
Poliovirus | Picornaviridae, Enterovirus | ss+RNA | Non-env | Human | Entry | VP1, VP2 and VP3 | Poliovirus receptor (PVR)![]() |
Adhesion molecule | adherens junction of epithelial tissue or the chemical synapse of neurons | epithelial cells in oropharyngeal and enteric tract, neurons | Clathrin/caveolin-independent endocytosis and Caveolin-mediated endocytosis |
Porcine epidemic diarrhea virus | Coronaviridae, Alphacoronavirus | ss+RNA | Env | Swine | Entry | Spike glycoprotein | ANPEP ![]() |
Peptidase | intestinal, lung and kidney epithelial cells, liver | epithelial cells in the gastrointestinal tract | Clathrin-mediated endocytosis![]() |
Porcine reproductive and respiratory syndrome virus | Arteriviridae, Arterivirus | ss+RNA | Env | Swine | Adhesion | GP5 | Heparan sulfate![]() |
Polysaccharide | Macrophages | Clathrin-mediated endocytosis | |
Porcine reproductive and respiratory syndrome virus | Arteriviridae, Arterivirus | ss+RNA | Env | Swine | Entry | GP5 | SIGLEC1?![]() |
Adhesion molecule | Macrophage | Macrophages | Clathrin-mediated endocytosis |
Porcine reproductive and respiratory syndrome virus | Arteriviridae, Arterivirus | ss+RNA | Env | Swine | Entry | GP2a, GP4 | CD163![]() |
Receptor | Monocytes | Macrophages | Clathrin-mediated endocytosis |
Porcine reproductive and respiratory syndrome virus | Arteriviridae, Arterivirus | ss+RNA | Env | Swine | Entry | GP2a, GP4 | CD151![]() |
Adhesion molecule | Muscle cells, epithelial cells, endothelial cells, activated T lymphocytes, dendritic cells ans Schwann cells | Macrophages | Clathrin-mediated endocytosis |
Sindbis virus | Togaviridae, Alphavirus |
ss+RNA | Env | Mosquitoes, Bird, Human | Adhesion | E2 glycoprotein | Heparan sulfate![]() |
Polysaccharide | ? | Clathrin-mediated endocytosis | |
Rubella virus | Togaviridae, Alphavirus |
ss+RNA | Env | Human | Entry | E2 glycoprotein | MOG![]() |
Adhesion molecule | Central nervous system, heart, muscle | Respiratory tract, .. | Clathrin-mediated endocytosis |
Sindbis virus | Togaviridae, Alphavirus |
ss+RNA | Env | Mosquitoes, Bird, Human | Entry | E2 glycoprotein | Laminin receptor (RPSA)![]() | Receptor | Ubiquitous | ? | Clathrin-mediated endocytosis |
Human MERS Coronavirus | Coronaviridae, Betacoronavirus | ss+RNA | Env | Human, bats, mammals | Entry | Spike glycoprotein | DPP4![]() |
Peptidase | Muscles, lung, kidney![]() Tissue Distribution of the MERS-Coronavirus Receptor in Bats W. Widagdo, Lineke Begeman, Debby Schipper, Peter R. van Run, Andrew A. Cunningham, Nils Kley, Chantal B. Reusken, Bart L. Haagmans, Judith M. A. van den Brand Sci Rep April 26, 2017; 7: 1193 |
Respiratory tract | ? |
Human SARS Coronavirus | Coronaviridae, Betacoronavirus | ss+RNA | Env | Human, bats, mammals | Adhesion | Spike glycoprotein | CLEC4G (LSECtin)![]() |
Lectin | Dendritic cells, macrophages, sinusoidal endothelial cells of the liver and lymph node | pneumocytes in the lungs and surface enterocytes in the small bowel | Clathrin-mediated endocytosis![]() |
Human SARS Coronavirus | Coronaviridae, Betacoronavirus | ss+RNA | Env | Human, bats, mammals | Adhesion | Spike glycoprotein | DC-SIGN![]() |
Lectin | Dendritic cells | pneumocytes in the lungs and surface enterocytes in the small bowel | Clathrin-mediated endocytosis![]() |
Human SARS Coronavirus | Coronaviridae, Betacoronavirus | ss+RNA | Env | Human, bats, mammals | Adhesion | Spike glycoprotein | CLEC4M(L-SIGN)![]() |
Lectin | liver sinusoidal endothelial cells and lymph node | pneumocytes in the lungs and surface enterocytes in the small bowel | Clathrin-mediated endocytosis![]() |
Human SARS Coronavirus | Coronaviridae, Betacoronavirus | ss+RNA | Env | Human, bats, mammals | Entry | Spike glycoprotein | ACE2![]() |
peptidase | vascular endothelial cells of the heart and the kidneys | pneumocytes in the lungs and surface enterocytes in the small bowel | Clathrin-mediated endocytosis![]() |
Transmissible gastroenteritis virus | Coronaviridae, Alphacoronavirus | ss+RNA | Env | Swine | Entry | Spike glycoprotein | ANPEP![]() |
peptidase | intestinal, lung and kidney epithelial cells, liver | epithelial cells in the gastrointestinal tract | ? |
Venezuelan Equine Encephalitis | Togaviridae, Alphavirus |
ss+RNA | Env | Horse, Human | Entry | E2 glycoprotein | Laminin receptor (RPSA)![]() |
Receptor | Ubiquitous | neuron | Clathrin-mediated endocytosis![]() |
West Nile virus | Flaviviridae, Flavivirus | ss+RNA | Env | Birds, mosquitoes, Human | Entry | virion membrane phosphatidylserine? through MFGE8 bridging | Integrin αVβ3?![]() |
Adhesion molecule | primary: Langerhans dendritic cells, secondary: Lymphocytes, kidney, spleen and liver | Clathrin-mediated endocytosis![]() |
|
West Nile virus | Flaviviridae, Flavivirus | ss+RNA | Env | Birds, mosquitoes, Human | Adhesion | Envelope protein E | DC-SIGN![]() |
Lectin | Dendritic cells | primary: Langerhans dendritic cells, secondary: Lymphocytes, kidney, spleen and liver | Clathrin-mediated endocytosis![]() |
West Nile virus | Flaviviridae, Flavivirus | ss+RNA | Env | Birds, mosquitoes, Human | Adhesion | Envelope protein E | CLEC4M(L-SIGN)![]() |
Lectin | liver sinusoidal endothelial cells and lymph node | primary: Langerhans dendritic cells, secondary: Lymphocytes, kidney, spleen and liver | Clathrin-mediated endocytosis![]() |
Activation of EGFR on monocytes is required for human cytomegalovirus entry and mediates cellular motility
Gary Chan, Maciej T. Nogalski, Andrew D. Yurochko
Proc. Natl. Acad. Sci. U.S.A. December 29, 2009; 106: 22369?22374
Gary Chan, Maciej T. Nogalski, Andrew D. Yurochko
Proc. Natl. Acad. Sci. U.S.A. December 29, 2009; 106: 22369?22374
Influenza entry pathways in polarized MDCK cells
Yueting Zhang, Gary R. Whittaker
Biochem. Biophys. Res. Commun. July 18, 2014; 450: 234?239
Yueting Zhang, Gary R. Whittaker
Biochem. Biophys. Res. Commun. July 18, 2014; 450: 234?239
Fusion of Sendai virus and individual host cells and inhibition of fusion by lipophosphoglycan measured with image correlation spectroscopy
B. J. Rasmusson, T. D. Flanagan, S. J. Turco, R. M. Epand, N. O. Petersen
Biochim. Biophys. Acta September 16, 1998; 1404: 338?352
B. J. Rasmusson, T. D. Flanagan, S. J. Turco, R. M. Epand, N. O. Petersen
Biochim. Biophys. Acta September 16, 1998; 1404: 338?352
Respiratory syncytial virus glycoprotein G interacts with DC-SIGN and L-SIGN to activate ERK1 and ERK2
Teresa R. Johnson, Jason S. McLellan, Barney S. Graham
J. Virol. February 2012; 86: 1339?1347
Teresa R. Johnson, Jason S. McLellan, Barney S. Graham
J. Virol. February 2012; 86: 1339?1347
The C-type Lectin Langerin Functions as a Receptor for Attachment and Infectious Entry of Influenza A Virus
Wy Ching Ng, Sarah L. Londrigan, Najla Nasr, Anthony L. Cunningham, Stuart Turville, Andrew G. Brooks, Patrick C. Reading
J. Virol. 2015; 90: 206?221
Wy Ching Ng, Sarah L. Londrigan, Najla Nasr, Anthony L. Cunningham, Stuart Turville, Andrew G. Brooks, Patrick C. Reading
J. Virol. 2015; 90: 206?221
A Sialylated Voltage-Dependent Ca(2+) Channel Binds Hemagglutinin and Mediates Influenza A Virus Entry into Mammalian Cells.
Fujioka Y, Nishide S, Ose T, Suzuki T, Kato I, Fukuhara H, Fujioka M, Horiuchi
K, Satoh AO, Nepal P, Kashiwagi S, Wang J, Horiguchi M, Sato Y, Paudel S, Nanbo
A, Miyazaki T, Hasegawa H, Maenaka K, Ohba Y.
Cell Host Microbe. 2018 Jun 13;23(6):809-818
Identification of transferrin receptor 1 as a hepatitis C virus entry factor
Danyelle N Martin, Susan L Uprichard
Proc. Natl. Acad. Sci. U.S.A. June 25, 2013; 110: 10777?10782
Danyelle N Martin, Susan L Uprichard
Proc. Natl. Acad. Sci. U.S.A. June 25, 2013; 110: 10777?10782
Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses
R Vlasak, W Luytjes, W Spaan, P Palese
Proc. Natl. Acad. Sci. U.S.A. June 1988; 85: 4526?4529
R Vlasak, W Luytjes, W Spaan, P Palese
Proc. Natl. Acad. Sci. U.S.A. June 1988; 85: 4526?4529
Entry of bovine viral diarrhea virus into ovine cells occurs through clathrin-dependent endocytosis and low pH-dependent fusion
Basavaraj Shrishail Mathapati, Niranjan Mishra, Katherukamem Rajukumar, Ram Kumar Nema, Sthita Pragnya Behera, Shiv Chandra Dubey
In Vitro Cell. Dev. Biol. Anim. May 2010; 46: 403?407
Basavaraj Shrishail Mathapati, Niranjan Mishra, Katherukamem Rajukumar, Ram Kumar Nema, Sthita Pragnya Behera, Shiv Chandra Dubey
In Vitro Cell. Dev. Biol. Anim. May 2010; 46: 403?407
Entry of coxsackievirus A9 into host cells: specific interactions with alpha v beta 3 integrin, the vitronectin receptor
M Roivainen, L Piirainen, T Hovi, I Virtanen, T Riikonen, J Heino, T Hyypi?
Virology September 1994; 203: 357?365
M Roivainen, L Piirainen, T Hovi, I Virtanen, T Riikonen, J Heino, T Hyypi?
Virology September 1994; 203: 357?365
Integrin alpha v beta 6 is an RGD-dependent receptor for coxsackievirus A9
Ci?dem H Williams, Tommi Kajander, Timo Hyypi?, Terry Jackson, Dean Sheppard, Glyn Stanway
J. Virol. July 2004; 78: 6967?6973
Ci?dem H Williams, Tommi Kajander, Timo Hyypi?, Terry Jackson, Dean Sheppard, Glyn Stanway
J. Virol. July 2004; 78: 6967?6973
Interaction of coxsackievirus A21 with its cellular receptor, ICAM-1
C Xiao, C M Bator, V D Bowman, E Rieder, Y He, B H?bert, J Bella, T S Baker, E Wimmer, R J Kuhn, M G Rossmann
J. Virol. March 2001; 75: 2444?2451
C Xiao, C M Bator, V D Bowman, E Rieder, Y He, B H?bert, J Bella, T S Baker, E Wimmer, R J Kuhn, M G Rossmann
J. Virol. March 2001; 75: 2444?2451
Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry
D R Shafren, D J Dorahy, R A Ingham, G F Burns, R D Barry
J. Virol. June 1997; 71: 4736?4743
D R Shafren, D J Dorahy, R A Ingham, G F Burns, R D Barry
J. Virol. June 1997; 71: 4736?4743
The coxsackie-adenovirus receptor (CAR) is used by reference strains and clinical isolates representing all six serotypes of coxsackievirus group B and by swine vesicular disease virus
T A Martino, M Petric, H Weingartl, J M Bergelson, M A Opavsky, C D Richardson, J F Modlin, R W Finberg, K C Kain, N Willis, C J Gauntt, P P Liu
Virology May 25, 2000; 271: 99?108
T A Martino, M Petric, H Weingartl, J M Bergelson, M A Opavsky, C D Richardson, J F Modlin, R W Finberg, K C Kain, N Willis, C J Gauntt, P P Liu
Virology May 25, 2000; 271: 99?108
Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment
D R Shafren, R C Bates, M V Agrez, R L Herd, G F Burns, R D Barry
J. Virol. June 1995; 69: 3873?3877
D R Shafren, R C Bates, M V Agrez, R L Herd, G F Burns, R D Barry
J. Virol. June 1995; 69: 3873?3877
Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate
Y Chen, T Maguire, R E Hileman, J R Fromm, J D Esko, R J Linhardt, R M Marks
Nat. Med. August 1997; 3: 866?871
Y Chen, T Maguire, R E Hileman, J R Fromm, J D Esko, R J Linhardt, R M Marks
Nat. Med. August 1997; 3: 866?871
Structural flexibility of the macrophage dengue virus receptor CLEC5A: implications for ligand binding and signaling
Aleksandra A Watson, Andrey A Lebedev, Benjamin A Hall, Angharad E Fenton-May, Alexei A Vagin, Wanwisa Dejnirattisai, James Felce, Juthathip Mongkolsapaya, Angelina S Palma, Yan Liu, Ten Feizi, Gavin R Screaton, Garib N Murshudov, Christopher A O?Callaghan
J. Biol. Chem. July 8, 2011; 286: 24208?24218
Aleksandra A Watson, Andrey A Lebedev, Benjamin A Hall, Angharad E Fenton-May, Alexei A Vagin, Wanwisa Dejnirattisai, James Felce, Juthathip Mongkolsapaya, Angelina S Palma, Yan Liu, Ten Feizi, Gavin R Screaton, Garib N Murshudov, Christopher A O?Callaghan
J. Biol. Chem. July 8, 2011; 286: 24208?24218
VCAM-1 is a receptor for encephalomyocarditis virus on murine vascular endothelial cells
S A Huber
J. Virol. June 1994; 68: 3453?3458
S A Huber
J. Virol. June 1994; 68: 3453?3458
Infection by echoviruses 1 and 8 depends on the alpha 2 subunit of human VLA-2
J M Bergelson, N St John, S Kawaguchi, M Chan, H Stubdal, J Modlin, R W Finberg
J. Virol. November 1993; 67: 6847?6852
J M Bergelson, N St John, S Kawaguchi, M Chan, H Stubdal, J Modlin, R W Finberg
J. Virol. November 1993; 67: 6847?6852
Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses
J M Bergelson, M Chan, K R Solomon, N F St John, H Lin, R W Finberg
Proc. Natl. Acad. Sci. U.S.A. June 21, 1994; 91: 6245?6248
J M Bergelson, M Chan, K R Solomon, N F St John, H Lin, R W Finberg
Proc. Natl. Acad. Sci. U.S.A. June 21, 1994; 91: 6245?6248
The HeLa cell receptor for enterovirus 70 is decay-accelerating factor (CD55)
T M Karnauchow, D L Tolson, B A Harrison, E Altman, D M Lublin, K Dimock
J. Virol. August 1996; 70: 5143?5152
T M Karnauchow, D L Tolson, B A Harrison, E Altman, D M Lublin, K Dimock
J. Virol. August 1996; 70: 5143?5152
Enterovirus 70 binds to different glycoconjugates containing alpha2,3-linked sialic acid on different cell lines
M Reza Nokhbeh, Samir Hazra, David A Alexander, Ahmar Khan, Morgan McAllister, Erik J Suuronen, May Griffith, Kenneth Dimock
J. Virol. June 2005; 79: 7087?7094
M Reza Nokhbeh, Samir Hazra, David A Alexander, Ahmar Khan, Morgan McAllister, Erik J Suuronen, May Griffith, Kenneth Dimock
J. Virol. June 2005; 79: 7087?7094
Cellular receptors for foot and mouth disease virus
J Ruiz-S?enz, Y Goez, W Tabares, A L?pez-Herrera
Intervirology 2009; 52: 201?212
J Ruiz-S?enz, Y Goez, W Tabares, A L?pez-Herrera
Intervirology 2009; 52: 201?212
Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus
G Kaplan, A Totsuka, P Thompson, T Akatsuka, Y Moritsugu, S M Feinstone
EMBO J. August 15, 1996; 15: 4282?4296
G Kaplan, A Totsuka, P Thompson, T Akatsuka, Y Moritsugu, S M Feinstone
EMBO J. August 15, 1996; 15: 4282?4296
Human aminopeptidase N is a receptor for human coronavirus 229E
C L Yeager, R A Ashmun, R K Williams, C B Cardellichio, L H Shapiro, A T Look, K V Holmes
Nature June 4, 1992; 357: 420?422
C L Yeager, R A Ashmun, R K Williams, C B Cardellichio, L H Shapiro, A T Look, K V Holmes
Nature June 4, 1992; 357: 420?422
Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses
R Vlasak, W Luytjes, W Spaan, P Palese
Proc. Natl. Acad. Sci. U.S.A. June 1988; 85: 4526?4529
R Vlasak, W Luytjes, W Spaan, P Palese
Proc. Natl. Acad. Sci. U.S.A. June 1988; 85: 4526?4529
Entry of human parechovirus 1
P Joki-Korpela, V Marjom?ki, C Krogerus, J Heino, T Hyypi?
J. Virol. February 2001; 75: 1958?1967
P Joki-Korpela, V Marjom?ki, C Krogerus, J Heino, T Hyypi?
J. Virol. February 2001; 75: 1958?1967
The major human rhinovirus receptor is ICAM-1
J M Greve, G Davis, A M Meyer, C P Forte, S C Yost, C W Marlor, M E Kamarck, A McClelland
Cell March 10, 1989; 56: 839?847
J M Greve, G Davis, A M Meyer, C P Forte, S C Yost, C W Marlor, M E Kamarck, A McClelland
Cell March 10, 1989; 56: 839?847
Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus
F Hofer, M Gruenberger, H Kowalski, H Machat, M Huettinger, E Kuechler, D Blaas
Proc. Natl. Acad. Sci. U.S.A. March 1, 1994; 91: 1839?1842
F Hofer, M Gruenberger, H Kowalski, H Machat, M Huettinger, E Kuechler, D Blaas
Proc. Natl. Acad. Sci. U.S.A. March 1, 1994; 91: 1839?1842
Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV
G S Dveksler, M N Pensiero, C B Cardellichio, R K Williams, G S Jiang, K V Holmes, C W Dieffenbach
J. Virol. December 1991; 65: 6881?6891
G S Dveksler, M N Pensiero, C B Cardellichio, R K Williams, G S Jiang, K V Holmes, C W Dieffenbach
J. Virol. December 1991; 65: 6881?6891
Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily
C L Mendelsohn, E Wimmer, V R Racaniello
Cell March 10, 1989; 56: 855?865
C L Mendelsohn, E Wimmer, V R Racaniello
Cell March 10, 1989; 56: 855?865
Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus
B X Li, J W Ge, Y J Li
Virology August 15, 2007; 365: 166?172
B X Li, J W Ge, Y J Li
Virology August 15, 2007; 365: 166?172
The M/GP(5) glycoprotein complex of porcine reproductive and respiratory syndrome virus binds the sialoadhesin receptor in a sialic acid-dependent manner
Wander Van Breedam, Hanne Van Gorp, Jiquan Q Zhang, Paul R Crocker, Peter L Delputte, Hans J Nauwynck
PLoS Pathog. January 2010; 6: e1000730
Wander Van Breedam, Hanne Van Gorp, Jiquan Q Zhang, Paul R Crocker, Peter L Delputte, Hans J Nauwynck
PLoS Pathog. January 2010; 6: e1000730
Human rhinovirus 87 and enterovirus 68 represent a unique serotype with rhinovirus and enterovirus features
Soile Blomqvist, Carita Savolainen, Laura R?man, Merja Roivainen, Tapani Hovi
J. Clin. Microbiol. November 2002; 40: 4218?4223
Soile Blomqvist, Carita Savolainen, Laura R?man, Merja Roivainen, Tapani Hovi
J. Clin. Microbiol. November 2002; 40: 4218?4223
The major and minor group receptor families contain all but one human rhinovirus serotype
C R Uncapher, C M DeWitt, R J Colonno
Virology February 1991; 180: 814?817
C R Uncapher, C M DeWitt, R J Colonno
Virology February 1991; 180: 814?817
Binding of Sindbis virus to cell surface heparan sulfate
A P Byrnes, D E Griffin
J. Virol. September 1998; 72: 7349?7356
A P Byrnes, D E Griffin
J. Virol. September 1998; 72: 7349?7356
High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells
K S Wang, R J Kuhn, E G Strauss, S Ou, J H Strauss
J. Virol. August 1992; 66: 4992?5001
K S Wang, R J Kuhn, E G Strauss, S Ou, J H Strauss
J. Virol. August 1992; 66: 4992?5001
Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV
B Delmas, J Gelfi, R L?Haridon, L K Vogel, H Sj?str?m, O Nor?n, H Laude
Nature June 4, 1992; 357: 417?420
B Delmas, J Gelfi, R L?Haridon, L K Vogel, H Sj?str?m, O Nor?n, H Laude
Nature June 4, 1992; 357: 417?420
CD46 is a cellular receptor for bovine viral diarrhea virus
Karin Maurer, Thomas Krey, Volker Moennig, Heinz-J?rgen Thiel, Till R?menapf
J. Virol. February 2004; 78: 1792?1799
Karin Maurer, Thomas Krey, Volker Moennig, Heinz-J?rgen Thiel, Till R?menapf
J. Virol. February 2004; 78: 1792?1799
Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells
Betsy Yang, Hau Chuang, Kuender D Yang
Virol. J. 2009; 6: 141
Betsy Yang, Hau Chuang, Kuender D Yang
Virol. J. 2009; 6: 141
Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71
Yorihiro Nishimura, Masayuki Shimojima, Yoshio Tano, Tatsuo Miyamura, Takaji Wakita, Hiroyuki Shimizu
Nat. Med. July 2009; 15: 794?797
Yorihiro Nishimura, Masayuki Shimojima, Yoshio Tano, Tatsuo Miyamura, Takaji Wakita, Hiroyuki Shimizu
Nat. Med. July 2009; 15: 794?797
DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells
Boonrat Tassaneetrithep, Timothy H Burgess, Angela Granelli-Piperno, Christine Trumpfheller, Jennifer Finke, Wellington Sun, Michael A Eller, Kovit Pattanapanyasat, Suttipant Sarasombath, Deborah L Birx, Ralph M Steinman, Sarah Schlesinger, Mary A Marovich
J. Exp. Med. April 7, 2003; 197: 823?829
Boonrat Tassaneetrithep, Timothy H Burgess, Angela Granelli-Piperno, Christine Trumpfheller, Jennifer Finke, Wellington Sun, Michael A Eller, Kovit Pattanapanyasat, Suttipant Sarasombath, Deborah L Birx, Ralph M Steinman, Sarah Schlesinger, Mary A Marovich
J. Exp. Med. April 7, 2003; 197: 823?829
Scavenger receptor B2 is a cellular receptor for enterovirus 71
Seiya Yamayoshi, Yasuko Yamashita, Jifen Li, Nobutaka Hanagata, Takashi Minowa, Taro Takemura, Satoshi Koike
Nat. Med. July 2009; 15: 798?801
Seiya Yamayoshi, Yasuko Yamashita, Jifen Li, Nobutaka Hanagata, Takashi Minowa, Taro Takemura, Satoshi Koike
Nat. Med. July 2009; 15: 798?801
Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor
Chutima Thepparit, Duncan R Smith
J. Virol. November 2004; 78: 12647?12656
Chutima Thepparit, Duncan R Smith
J. Virol. November 2004; 78: 12647?12656
Differential binding efficiency between the envelope protein of Japanese encephalitis virus variants and heparan sulfate on the cell surface
Hsiuan Liu, Shyan-Song Chiou, Wei-June Chen
J. Med. Virol. April 2004; 72: 618?624
Hsiuan Liu, Shyan-Song Chiou, Wei-June Chen
J. Med. Virol. April 2004; 72: 618?624
Integrins modulate the infection efficiency of West Nile virus into cells
Katja Schmidt, Markus Keller, Bernhard L Bader, TomKoryt, Stefan Finke, Ute Ziegler, Martin H Groschup
J. Gen. Virol. August 2013; 94: 1723?1733
Katja Schmidt, Markus Keller, Bernhard L Bader, TomKoryt, Stefan Finke, Ute Ziegler, Martin H Groschup
J. Gen. Virol. August 2013; 94: 1723?1733
Venezuelan equine encephalitis virus entry mechanism requires late endosome formation and resists cell membrane cholesterol depletion
Andrey A Kolokoltsov, Elisa H Fleming, Robert A Davey
Virology April 10, 2006; 347: 333?342
Andrey A Kolokoltsov, Elisa H Fleming, Robert A Davey
Virology April 10, 2006; 347: 333?342
A putative receptor for Venezuelan equine encephalitis virus from mosquito cells
G V Ludwig, J P Kondig, J F Smith
J. Virol. August 1996; 70: 5592?5599
G V Ludwig, J P Kondig, J F Smith
J. Virol. August 1996; 70: 5592?5599
Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81
Mirjam B Zeisel, George Koutsoudakis, Eva K Schnober, Anita Haberstroh, Hubert E Blum, Fran?ois-Lo?c Cosset, Takaji Wakita, Daniel Jaeck, Michel Doffoel, Cathy Royer, Eric Soulier, Evelyne Schvoerer, Catherine Schuster, Fran?oise Stoll-Keller, Ralf Bartenschlager, Thomas Pietschmann, Heidi Barth, Thomas F Baumert
Hepatology December 2007; 46: 1722?1731
Mirjam B Zeisel, George Koutsoudakis, Eva K Schnober, Anita Haberstroh, Hubert E Blum, Fran?ois-Lo?c Cosset, Takaji Wakita, Daniel Jaeck, Michel Doffoel, Cathy Royer, Eric Soulier, Evelyne Schvoerer, Catherine Schuster, Fran?oise Stoll-Keller, Ralf Bartenschlager, Thomas Pietschmann, Heidi Barth, Thomas F Baumert
Hepatology December 2007; 46: 1722?1731
The secret life of ACE2 as a receptor for the SARS virus
Dimiter S. Dimitrov
Cell December 12, 2003; 115: 652?653
Dimiter S. Dimitrov
Cell December 12, 2003; 115: 652?653
Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted
Yuuki Inoue, Nobuyuki Tanaka, Yoshinori Tanaka, Shingo Inoue, Kouichi Morita, Min Zhuang, Toshio Hattori, Kazuo Sugamura
J. Virol. August 2007; 81: 8722?8729
Yuuki Inoue, Nobuyuki Tanaka, Yoshinori Tanaka, Shingo Inoue, Kouichi Morita, Min Zhuang, Toshio Hattori, Kazuo Sugamura
J. Virol. August 2007; 81: 8722?8729
Caveolar endocytosis is required for human PSGL-1-mediated enterovirus 71 infection
Hsiang-Yin Lin, Ya-Ting Yang, Shu-Ling Yu, Kuang-Nan Hsiao, Chia-Chyi Liu, Charles Sia, Yen-Hung Chow
J. Virol. August 2013; 87: 9064?9076
Hsiang-Yin Lin, Ya-Ting Yang, Shu-Ling Yu, Kuang-Nan Hsiao, Chia-Chyi Liu, Charles Sia, Yen-Hung Chow
J. Virol. August 2013; 87: 9064?9076
Basolateral sorting of the coxsackie and adenovirus receptor through interaction of a canonical YXXPhi motif with the clathrin adaptors AP-1A and AP-1B
Jose Maria Carvajal-Gonzalez, Diego Gravotta, Rafael Mattera, Fernando Diaz, Andres Perez Bay, Angel C. Roman, Ryan P. Schreiner, Roland Thuenauer, Juan S. Bonifacino, Enrique Rodriguez-Boulan
Proc. Natl. Acad. Sci. U.S.A. March 6, 2012; 109: 3820?3825
Jose Maria Carvajal-Gonzalez, Diego Gravotta, Rafael Mattera, Fernando Diaz, Andres Perez Bay, Angel C. Roman, Ryan P. Schreiner, Roland Thuenauer, Juan S. Bonifacino, Enrique Rodriguez-Boulan
Proc. Natl. Acad. Sci. U.S.A. March 6, 2012; 109: 3820?3825
Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions
Carolyn B. Coyne, Jeffrey M. Bergelson
Cell January 13, 2006; 124: 119?131
Carolyn B. Coyne, Jeffrey M. Bergelson
Cell January 13, 2006; 124: 119?131
Efficient infection of buffalo rat liver-resistant cells by encephalomyocarditis virus requires binding to cell surface sialic acids
Monique Guy, Stefan Chilmonczyk, Catherine Cruci?re, Marc Eloit, Labib Bakkali-Kassimi
J. Gen. Virol. January 2009; 90: 187?196
Monique Guy, Stefan Chilmonczyk, Catherine Cruci?re, Marc Eloit, Labib Bakkali-Kassimi
J. Gen. Virol. January 2009; 90: 187?196
Clathrin- and serine proteases-dependent uptake of porcine epidemic diarrhea virus into Vero cells
Jung-Eun Park, Deu John M. Cruz, Hyun-Jin Shin
Virus Res. October 13, 2014; 191: 21?29
Jung-Eun Park, Deu John M. Cruz, Hyun-Jin Shin
Virus Res. October 13, 2014; 191: 21?29
Mouse hepatitis virus type 2 enters cells through a clathrin-mediated endocytic pathway independent of Eps15
Yinghui Pu, Xuming Zhang
J. Virol. August 2008; 82: 8112?8123
Yinghui Pu, Xuming Zhang
J. Virol. August 2008; 82: 8112?8123
Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae
Ryuji Nomura, Asuka Kiyota, Etsuko Suzaki, Katsuko Kataoka, Yoshihide Ohe, Kaoru Miyamoto, Takao Senda, Toyoshi Fujimoto
J. Virol. August 2004; 78: 8701?8708
Ryuji Nomura, Asuka Kiyota, Etsuko Suzaki, Katsuko Kataoka, Yoshihide Ohe, Kaoru Miyamoto, Takao Senda, Toyoshi Fujimoto
J. Virol. August 2004; 78: 8701?8708
Human coronavirus 229E can use CD209L (L-SIGN) to enter cells
Scott A. Jeffers, Erin M. Hemmila, Kathryn V. Holmes
Adv. Exp. Med. Biol. 2006; 581: 265?269
Scott A. Jeffers, Erin M. Hemmila, Kathryn V. Holmes
Adv. Exp. Med. Biol. 2006; 581: 265?269
Porcine complement regulatory protein CD46 and heparan sulfates are the major factors for classical swine fever virus attachment in vitro
Carolin Dr?ger, Martin Beer, Sandra Blome
Arch. Virol. January 7, 2015;
Carolin Dr?ger, Martin Beer, Sandra Blome
Arch. Virol. January 7, 2015;
Internalization of coxsackievirus A9 is mediated by {beta}2-microglobulin, dynamin, and Arf6 but not by caveolin-1 or clathrin
Outi Heikkil?, Petri Susi, Tuire Tevaluoto, Heidi H?rm?, Varpu Marjom?ki, Timo Hyypi?, Saija Kiljunen
J. Virol. April 2010; 84: 3666?3681
Outi Heikkil?, Petri Susi, Tuire Tevaluoto, Heidi H?rm?, Varpu Marjom?ki, Timo Hyypi?, Saija Kiljunen
J. Virol. April 2010; 84: 3666?3681
Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism
Manjula Kalia, Renu Khasa, Manish Sharma, Minu Nain, Sudhanshu Vrati
J. Virol. January 2013; 87: 148?162
Manjula Kalia, Renu Khasa, Manish Sharma, Minu Nain, Sudhanshu Vrati
J. Virol. January 2013; 87: 148?162
Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway
J. J. H. Chu, M. L. Ng
J. Virol. October 2004; 78: 10543?10555
J. J. H. Chu, M. L. Ng
J. Virol. October 2004; 78: 10543?10555